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There is significant interest in the synthesis of five-membered 
rings via cycloaddition reactions. Of the strategies explored to 
date, the nickel- or palladium-catalyzed reaction between meth-
ylenecyclopropane and an alkene or alkyne and the trimethyl-
enemethane (TMM)-Pd reaction have received considerable 
attention.2-4 Intramolecular methylenecyclopropane reactions 
have also recently been reported.5 However, the stereochemical 
integrity at C* in these cycloadditions has not yet been 
investigated, eq 1 .* Our recent success in achieving regio- and 
diastereoselective cyclopropanation of a-allenic alcohols provided 
the first opportunity to address this important issue.7 
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Our studies began with an investigation of the nickel-catalyzed 
cycloaddition between 1 and phenyl vinyl sulfone, eq 2. A mixture 
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of adducts was formed, which were desulfonylated to give 2 in 
49% overall yield. Comparison with authentic samples revealed 
that a 10:1 mixture of diastereomers at C-2 was produced, with 
the major product arising from overall retention of stereochemistry 
at the cyclopropyl carbon.8 This result is surprising because 
reactions catalyzed by nickel usually take place at the proximal 
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C—C bond which should not lead to any epimerization. Loss of 
stereochemical integrity at C-2 can only occur via reaction at the 
distal bond. 

In contrast to cycloadditions using nickel, palladium catalysts 
react exclusively at the distal bond in methylenecyclopropanes, 
and it was of interest to learn if epimerization would also occur. 
Intermolecular cycloaddition failed between 1 and phenyl vinyl 
sulfone or dimethyl acetylenedicarboxylate in the presence of 
Pd2(dba)3 and (/-PrO)3P. However, when 3a was reacted with 
5 mol % of Pd2(dba)3 and (1'-PrO)3P, intramolecular cycloaddition 
took place in 72% yield and gave 5a as a single diastereomer, 
Scheme 1. The diastereomeric starting material 4a afforded 6a 
in 75% yield using 2 mol % of Pd2(dba)3 and (1-PrO)3P. The 1H 
NMR spectra (400 MHz) of the crude reaction mixtures 
established that both cycloadditions were stereospecific (>100: 
1). The reactions of 3b and 4b proceeded in an identical fashion 
and were equally stereospecific. Cycloaddition of the alcohol 7 
gave 8a in 85% yield, which illustrates that the substituent on the 
acetylene did not influence the stereospecificity. However, the 
substituent did affect the reactivity. For example, when the 
CH2OH group was replaced by a TBDMS moiety, cycloaddition 
failed to occur. 

NMR techniques (NOE, 2D NMR) failed to provide conclusive 
information on the relative stereochemistry of the cycloadducts 
from the Pd-catalyzed cycloadditions. Instead, we obtained 
unequivocal proof by an X-ray structure. Reduction of 6a with 
DIBAL-H (-78 0C, THF) gave alcohol 8a, which was esterified 
(3,5-dinitrobenzoic acid, DCC, DMAP) to provide a crystalline 
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product, 8b.9 The relative stereochemistry between the cyclohexyl 
ring and the hydrogen at the bridge indicated that the cycload-
dition not only was stereospecific but also occurred with overall 
retention of stereochemistry. 

In order to gain more information on the reaction pathway, we 
prepared the deuterated methylenecyclopropane 9.10 Reaction 
of 9 with Pd(O) gave 10 with complete scrambling at the vinylic 
and allylic positions as determined by 1H and 2H NMR, eq 3. 
When the reaction was run to 18% conversion, the recovered 
starting material showed no scrambling of the label between C-3 
and C-4! This is in contrast to studies by Noyori using nickel 
catalysts where significant isomerization in the recovered meth­
ylenecyclopropane was observed.11 
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From these results, information on the relative rates of the 
various reaction processes in palladium-catalyzed cycloadditions 
can be obtained. Coordination of the alkyne to the palladium 
appears to be necessary to trigger the subsequent steps since 
increasing steric bulk, which inhibits complexation, had a marked 
effect on the efficiency of the cycloaddition. Following com­
plexation in an edge-on orientation, insertion into the distal 
cyclopropane bond would generate metallacycle 12. Since no 
scrambling is observed in the recovered starting material, the 
insertion step must be rate determining because we do see 
scrambling in the final product. A <r-allyl interconversion, which 
exchanges C-3 and C-4, occurs in either 12 or 13 (which can also 
be represented as the w-allyl species 13') prior to reductive 
elimination to 14 (Scheme 2). 

Since the stereochemistry at C-2 is retained in the pathway 
leading to the cycloadduct, a retention or double inversion pathway 
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must be considered. Insertion by low oxidation state metals in 
cyclopropanes typically occurs with retention of configuration.12 

This implies that the carbometalation step (i.e., 12 to 13) also 
takes place with retention. 

In conclusion, we have shown that cycloaddition with Ni(COD)2 
gives synthetically useful levels of regio- and stereospecificity. 
Palladium-catalyzed intramolecular cycloaddition of diastereo-
merically pure methylenecyclopropanes is stereospecific and 
occurs with retention. We have also investigated the first 
deuterium-labeling studies with palladium catalysts and meth­
ylenecyclopropanes and shown that the insertion is irreversible. 
Importantly, application of these observations in synthetic 
endeavors can now be undertaken. The ease of preparing 
enantiomerically enriched starting materials is also noteworthy.7" 
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